Direct peptide-regulatable interactions between MHC class I molecules and tapasin.
نویسندگان
چکیده
Tapasin (Tpn) has been implicated in multiple steps of the MHC class I assembly pathway, but the mechanisms of function remain incompletely understood. Using purified proteins, we could demonstrate direct binding of Tpn to peptide-deficient forms of MHC class I molecules at physiological temperatures. Tpn also bound to M10.5, a pheromone receptor-associated MHC molecule that has an open and empty groove and that shares significant sequence identity with class I sequences. Two types of MHC class I-Tpn complexes were detectable in vitro depending on the input proteins; those depleted in beta(2)m, and those containing beta(2)m. Both were competent for subsequent assembly with peptides, but the latter complexes assembled more rapidly. Thus, the assembly rate of Tpn-associated class I was determined by the conditions under which Tpn-MHC class I complexes were induced. Peptide loading of class I inhibited Tpn-class I-binding interactions, and peptide-depletion enhanced binding. In combination with beta(2)m, certain peptides induced efficient dissociation of preformed Tpn-class I complexes. Together, these studies demonstrate direct Tpn-MHC class I interactions and preferential binding of empty MHC class I by Tpn, and that the Tpn-class I interaction is regulated by both beta(2)m and peptide. In cells, Tpn is likely to be a direct mediator of peptide-regulated binding and release of MHC class I from the TAP complex.
منابع مشابه
Redox-regulated export of the major histocompatibility complex class I-peptide complexes from the endoplasmic reticulum.
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled M...
متن کاملA charged amino acid residue in the transmembrane/cytoplasmic region of tapasin influences MHC class I assembly and maturation.
Tapasin influences the quantity and quality of MHC/peptide complexes at the cell surface; however, little is understood about the structural features that underlie its effects. Because tapasin, MHC class I, and TAP are transmembrane proteins, the tapasin transmembrane/cytoplasmic region has the potential to affect interactions at the endoplasmic reticulum membrane. In this study, we have assess...
متن کاملThe binding of TAPBPR and Tapasin to MHC class I is mutually exclusive.
The loading of peptide Ags onto MHC class I molecules is a highly controlled process in which the MHC class I-dedicated chaperone tapasin is a key player. We recently identified a tapasin-related molecule, TAPBPR, as an additional component in the MHC class I Ag-presentation pathway. In this study, we show that the amino acid residues important for tapasin to interact with MHC class I are highl...
متن کاملTAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst
Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can ...
متن کاملAn essential function of tapasin in quality control of HLA-G molecules.
Tapasin plays an important role in the quality control of major histocompatibility complex (MHC) class I assembly, but its precise function in this process remains controversial. Whether tapasin participates in the assembly of HLA-G has not been studied. HLA-G, an MHC class Ib molecule that binds a more restricted set of peptides than class Ia molecules, is a particularly interesting molecule, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 48 شماره
صفحات -
تاریخ انتشار 2006